
Simple Harmonic Motion

Oscillations

• Repetitive (periodic) motion

• Object moves around an equilibrium 
position
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Simple Harmonic Motion

• Periodic motion that is sinusoidal in nature
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Conditions Required for SHM

• The acceleration causing the motion is 
proportional to the displacement of the 
object from its equilibrium position

• The accelerating force must be trying to 
restore the object to its equilibrium position

xa 

Graphing SHM
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Phase Difference

• When waves have the same frequency 
and starting point they are said to be in 
phase
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• When waves of the same frequency have 
different starting points they are said to be 
out of phase
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• The difference between starting points 
between waves that are out of phase is 
the phase difference or phase shift 
(measured in degrees or radians)
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SHM and Circular Motion

• SHM is related to circular motion

• An object moving in a circle with constant 
angular velocity has an angular 
displacement given by 𝜃 ൌ 𝜔𝑡
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• The projection of the y component of the 
motion at a given time is y=r sinϴ or 
equivalently y=r sin ωt



Displacement, Velocity, & 
Acceleration

• Displacement can be represented by the 
equation:

txx sin0

• An equation for the velocity can be found 
by taking the derivative (calculus) of the 
displacement giving:

txv  cos0

• The acceleration will be the derivative of 
the velocity:

txa  sin0
2

• But x=x0 sin ωt

xa 2



The Velocity Equation

• We can derive an equation for the velocity 
of the particle at a given point
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Simple Pendulum

• The restoring force is perpendicular to the 
pendulum bob and string
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x – displacement in x direction
l – length of pendulum
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• This looks like the defining equation of 
SHM
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• Therefore…
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• Since the period for SHM is given by
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the period of the pendulum is
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Mass and Spring

• The restoring force for a mass on a spring 
is 𝐹 ൌ െ𝑘𝑥
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• Comparing this to the defining equation of 
SHM gives
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• And therefore a period of
k
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Energy

• A moving object has a kinetic energy of 
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• The velocity of a particle in SHM at a given 

point is 𝑣 ൌ േ𝜔 𝑥଴
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• Combining these equations gives us the 
kinetic energy at displacement x
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• The maximum kinetic energy occurs when 
the displacement is zero

• This must be the total energy (as the 
potential energy at this point is zero) 
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• We can calculate the potential energy by 
subtracting kinetic energy from the total 
energy
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Damping

• All mechanical systems will vibrate when 
they are set in motion

• If a system is allowed to vibrate without 
any external forces being applied, it will 
vibrate at is natural frequency, f0

• When resistive forces are present then the 
vibrations decay

• This is referred to as damping



• Underdamping
– the amplitude gradually decreases until the 

oscillations stop
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• Critical damping
– The system returns to equilibrium in the 

shortest time possible with no oscillations
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• Overdamping
– The system returns to equilibrium with no 

oscillations but much slower than a critically 
damped system
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Forced Vibrations

• When an external force acts on a 
mechanical system, the force may have its 
own frequency of vibration, which may 
affect the motion of the mechanical system

• Forced vibrations are those that occur 
when a regularly changing external force 
is applied to a system resulting in the 
system vibrating at the same frequency as 
the force

Resonance
• When a mechanical system is forced to 

oscillate by a driving force that has the 
same frequency as the natural frequency 
(f0) of the mechanical system, it will vibrate 
with maximum amplitude.

• This is called resonance.

• The degree of damping will alter the 
amplitude response of the system.
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Forcing Less than f0 Forcing Greater than f0

Forcing Equal to f0

Q factor

• The Q or “quality” factor is a criterion by 
which the sharpness of resonance can be 
assessed.
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• The Q factor is a numerical value with no 
units

• A system with a high Q factor is lightly 
damped 
– Energy dissipated per cycle is small

• The larger the Q factor, the sharper the 
resonance peak

• The Q factor is approximately the number 
of oscillations the system will make before 
its amplitude will decay to zero

• Some typical Q factors

Oscillator Q factor

critically damped door 0.5

mass on spring 50

simple pendulum 200

oscillating quartz crystal 30 000

Resonance can be bad…
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Resonance can also be good…
• Microwave ovens

– Microwaves force oscillation of water 
molecules generating heat inside the food

• Radios
– The tuner uses resonance to select the 

station

• Quartz oscillators
– The quartz is forced with an electric current 

causing it to oscillate at a very specific 
frequency


